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Transport with multiple-rate exchange in disordered media
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We investigate transport of particles subject to exchange using the continuous-time random-walk framework.
Transition is controlled by macroscale, and exchange by both macroscale and microscale disorder. A wide class
of exchange mechanisms is represented using the multiple-rate exchange model. Particles are transported along
random trajectories viewed as one-dimensional lattices. The solution of the transport problem is obtained in the
form of the crossing-time density,h(t;L), at an exit surfaceL; h is dependent on two functions,g and f. g
characterizes exchange controlled by microscale disorder. The joint densityf is central for the solution as it
relates the microscale and macroscale disorder along random trajectories. For the case of transition and
exchange disorder, we show that power-law exponenth ~characterizing microscale disorder! and power-law
exponentsat andam ~characterizing macroscale disorder!, define two regions delimited by a lineat5am(h
11): One in which the asymptotic transport is dominated by transition, and one in which it is dominated by
the exchange. For the case of transition disorder with uniform exchange, both transition and exchange can
influence the late-time behavior ofh(t). Microscale exchange processes will unconditionally influence the
late-time behavior ofh(t) only if h,0. If h.0, exchange will dominate at late time provided that transition
is asymptotically Gaussian.

DOI: 10.1103/PhysRevE.65.051308 PACS number~s!: 81.05.Rm, 05.40.Fb, 46.65.1g, 92.40.Kf
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I. INTRODUCTION

Transport in random media is of interest for understa
ing a variety of phenomena, in natural as well as enginee
systems. Transport often involves particles that are dyna
cally inert, but in some way interact~or are subject to ex-
change! with the porous matrix. Studies of transport wi
exchange in homogeneous porous media have a long t
tion in chromatography@1,2#. Moreover, a significant body
of literature has focused on understanding the effect of
croscale disorder on exchange, e.g., Refs.@3–5#. The
‘‘multiple-rate’’ concept provides a unifying model for dif
ferent exchange mechanisms, applicable to a wide rang
microscale disorder properties. This concept was first in
duced for modeling dielectric relaxation@6#, and subse-
quently extended to homogeneous porous media@7#.

Few studies to date have considered transport with
change in disordered media. A first comprehensive anal
was provided by Hughes and Sahimi@8,9# who considered
transport with multiple transport paths assuming relativ
simple~first-order! exchange; their analysis is based on m
ter equations and the effective media approximation.
though Hughes and Sahimi stress the relevance of thei
sults for geological media, it is well known that such syste
often exhibit more complex exchange than the first ord
e.g. @10,11#. Several recent studies@12–14# addressed trans
port with more complex exchange in disordered media, ho
ever, these results are still limited to a few specific excha
models.

The present work provides, for what we believe to be
first time, a continuous-time random-walk model for tran
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port with exchange in disordered media. Using the multip
rate concept, we can account for a wide range of excha
mechanisms, relevant for a variety of microstructural pro
erties. General solutions are derived either in terms of
Laplace transform of the crossing-time densityh(t), or in
terms of its moments. In the general case of microscale
order with infinite exchange times, the solution cannot
obtained in an analytical form, and Monte Carlo simulatio
are required. Illustration examples address transport ano
lies, in particular extended tailing ofh(t), which arises due
to combined effects of transition and exchange. We sum
rize conditions under which anomalous transport arises
ymptotically, controlled by macroscale disorder~transition!,
or by microscale disorder~exchange!.

II. MODEL

A. Problem formulation and assumptions

Let a dynamically inertpair of particles be injected simul
taneously into a disordered medium at timet50 at x5a in
R1, R2, or R3, wherex is a Cartesian position vector. Th
particle pair consists of one ‘‘interacting’’ particle~IP for
shorthand! and one ‘‘noninteracting’’ particle~NIP for short-
hand!. For t.0, the particle pair advances toward, ultimate
crossing, an exit surfaceL, following a trajectoryX(,,a),
where, is the intrinsic length alongX. Let u denote the IP
crossing time, andt the NIP crossing time atL. We denote
the probability density function~PDF! for u ash(t) and fort
as f (t)[ f t(t); h(t)dt is the probability thatt,u,t1dt,
and f (t)dt the probability thatt,t,t1dt at L.

The two main assumptions for our analysis are as follo
Transition is characterized by a nonzero mean drift; he

* f (t)dt51 for anya and any realization.
If a15a2 for two NIPs, thenX(,,a1)5X(,,a2) in any

realization; consequently, zero exchange impliesu5t, and
nonzero exchangeu.t.
©2002 The American Physical Society08-1
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V. CVETKOVIC AND R. HAGGERTY PHYSICAL REVIEW E65 051308
Typical examples where the above assumptions ap
would be flow-driven tracer transport by steady random fl
in natural systems, such as geological media@15#, or geo-
morphological networks@16#. Our second assumption im
plies that a random flow pattern is steady state, and tha
fluctuations on the scale smaller than the support scale
flow velocity ~other than those related to exchange! are ne-
glected. The above assumptions have been found approp
for heterogeneous aquifers@17#, fractured rock@12#, river
networks@16#, but also for laboratory-scale chromatograph
columns @1#, in other words, over a variety of transpo
scales.

Let P(x) denote theexchange parameter vector1 that var-
ies in space. Given the trajectoryX, and P(x), we wish to
quantify the IP crossing-time densityh. If the medium is
homogeneous in terms of exchange (P5const), and transi-
tion is Gaussian, the problem reduces to the one of chro
tography with known solutions forh, e.g.,@1#. Our emphasis
here is on transition and exchangedisorder ~with possible
non-Gaussian features! as would be applicable, for instanc
to natural environments.

B. Transition

We view X as a one-dimensional lattice withN equidis-
tant sites. Based on our assumptions, transition alongX is
simply a sequence of steps, where the site and step ind
coincide. The step durationDt i at sitei varies randomly. If a
flow field is considered, thenDt i5Dl /Vi , Vi being the
magnitude ofV i at sitei. The waiting-time density for trans
port on the lattice is site dependent, withc i(t)5d(t
2Dt i).

2

Let g i(t) denote the NIP crossing-time density at thei th
site; it is computed as

g i~ t !5E
0

t

c i~ t2t8!g i 21~ t8!dt8. ~1!

At L, we have~suppressing index ‘‘N’’ !

g~ t,t!5d~ t2t!, t5(
i 51

N

Dt i . ~2!

Note that g @Eq. ~2!# corresponds to the ‘‘renormalize
waiting-time density’’ for the canonical exponential waitin
time density of the continuous-time random walk, in t
limit N→` @18#.

1P summarizes, for instance, diffusion rates, equilibrium co
stants, intra-aggregate porosity, etc.

2For a classical random walk the simplest displacement densi
1/2(d i ,i 211d i ,i 11), whereas here we haved i ,i 11 , i.e., the probabil-
ity to move to sitei 11 from site i is one, and the transition pro
ceeds monotonically along the lattice. Hence any given site ca
visited only once.
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C. Exchange

The IP also follows trajectoryX, however, it is subject to
exchange, and hence its movement is delayed relative to
NIP.

We consider sufficiently diluted systems such that e
change is linear. Consistent with the definition of linear e
change@1,13# we introduce a site-dependent waiting-tim
density for an IP as

ĉ i5exp$2Dt is@11ĝi~s!#%, ~3!

where the hat denotes Laplace transform ands the Laplace
transform variable. The functiongi(t) characterizes in a gen
eral way linear exchange processes at sitei. Thus Eq.~3!
quantifies a ‘‘nonseparable’’ continuous-time random wa
e.g. @18#. In the absence of exchange,gi50, and the trans-
port of NIP and IP coincides. In the homogeneous case
single ~site-independent! waiting-time densityc(t) charac-
terizes exchange for the entire lattice.

The functiongi provides a mesoscale characterization
exchange processes, which take place on the micros
Considerable effort has been made to better understand
relation between microscopic structure and mesoscale ob
vations as quantified bygi . O’Shaugnessy and Procaccia@3#
and Havlin and Ben-Avraham@4#, for instance, have shown
how anomalous, subdiffusive behavior arises in porous m
dia due to fractal microporous structures. Sheintuch a
Brandon@19# and Giona and co-workers@5# have worked out
many of the details of mass uptake into synthetic fractal
croporous beads. Some environmental problems may als
determined by the release of material from natural mater
that have fractal pore spaces. A growing body of work su
gest that the pore space of many rocks is well character
as a fractal over many orders of magnitude, e.g.@20–22#.
Effective diffusivities in crystalline rock show a decrea
with sample size that may be consistent with fractal p
structure@23#.

In order to formulate the exchange as a multiple-rate p
cess, we first normalizegi(t) as

gi* ~ t !5gi~ t !/b i , b i5E
0

`

gi~ t !dt, ~4!

whereb i is referred to as the capacity coefficient of sitei.
The functiongi* is referred to as theexchange-time density,
i.e., a density function for the IP exchange time at sitei; gi*
is also referred to as the ‘‘memory function’’@24#.

A suitable form forgi is a linear superposition of expo
nential densities@6,18#,

gi~ t !5E
0

`

kf i~k!exp~2kt!dk ~5!

with

b i5E
0

`

f i~k!dk,

-

is

be
8-2
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TRANSPORT WITH MULTIPLE-RATE EXCHANGE IN . . . PHYSICAL REVIEW E65 051308
wheref i(k)/b i is a site-dependent density of the rate co
ficient k. Note thatb i5*gi(t)dt5*f i(k)dk, i.e., b i is the
zeroth moment of bothgi andbi . Assuming particular forms
of f i(k), we recover most of the models currently used
engineering practice@24# ~see Appendix B for a few ex
amples!.

D. Transition with exchange

From the recurrence relation we can write

ĝN[ĝ5)
i 51

N

ĉ i , ~6!

where we assume, for simplicity, that atx5a the waiting-
time density isd(t).

Substitution of Eq.~3! into Eq. ~6! yields

ĝ~s!5expH 2sF t1(
i 51

N

ĝi~s!Dt i G J . ~7!

We refer tog as theretention function, as it quantifies the
extent to which an IP is retarded relative to its NIP pair. F
gi50, there is no exchange andg @Eq. ~7!# degenerates to
Eq. ~2!; for ĝi5const5b, we getg(t,t)5d@ t2t(11b)#,
which is the statement of transition with simplest~equilib-
rium! exchange, e.g.@13#.

The retention functiong(t) is obtained by inverting Eq
~7! and may be written as

g~ t !5d~ t2t!+k~ t !5k~ t2t!, ~8!

where+ denotes the convolution operator, and

k~ t !5L21@e2F~s!#, F~s!5Fs(
i 51

N

Dt i ĝi~s!G , ~9!

with L21 denoting inverse Laplace transform. Thust is the
centering for the densityk(t). The functionF(s) determines
the form ofk. The asymptotic behavior ofk can be evaluated
as 12k̂'F(s) for s→0 ~see Sec. IV for specific examples!.

Transition under the present conditions implies that a p
ticle at sitei at time t8, will in the next step occupy sitei
11 at timet81t with probability 1.3 The timet is random
due to, on one hand, randomness of the flow field, and on
other hand, the exchange processes.

In applications, the exit surfaceL is specified, andt is a
random variable. Moreover, the functiongi(t) depends on
the exchange parameter vectorPi . We, therefore, regard
Eqs. ~8!,~9! as theconditional solution, for a given realiza-
tion of gi(t;Pi) and t. In the following section, we shal
account for the randomness int andPi .

3As a consequence, site occupancy and first-passage time den
are proportional.
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III. UNCONDITIONAL SOLUTIONS

Given the retention functiong(t) ~8!, we wish to compute
the unconditional IP crossing-time density at theNth site
~i.e., atL!, h(t).4

A. Zero exchange

Sincet is a random variable for a given realization of
disordered medium,g @Eq. ~2!# is a conditional solution for
the transport of a NIP. The unconditional solution
^g(t,t)&5 f t(t), where f (t)[ f t ; hence in this caseh(t)
[ f t(t).

The densityf (t) is difficult to determine in a general way
for arbitrary boundary conditions and disorder. For geolo
cal formations, for instance,f (t) has been computed analyt
cally assuming Gaussian transport@17#. Non-Gaussian fea-
tures of the conducting properties of geological media h
been established in a few cases where comprehensive
sets were available@25#. f (t) with non-Gaussian features ha
been identified for complex disorder as can be found in fr
tured rock@12,26#. Non-Gaussian features of transport ha
also been found in river networks, e.g.@16#.

In view of the variety of statistical/structural features
disordered media, in particular for natural systems, we
quire a general and flexible form forf t[ f (t) that can cap-
ture in a generic way both the Gaussian and non-Gaus
features of NIP transport. We propose the following for
defined in the Laplace domain as

f̂ t~s!5exp@caa2ds2c~a1s!a#, ~10!

wherea, c, d, a.0, andcaa is included for normalization.
We refer to Eq.~10! as a ‘‘truncated one-sided stable’’ den
sity, or simply a ‘‘truncated stable’’ density; fora50, Eq.
~10! reduces to the standard one-sided stable density,
Ref. @18#. Further discussion on the properties of Eq.~10! is
given in Appendix A.

B. Factorized case

For many applications, it may be sufficient to factorize t
nonhomogeneity ofg, such thatb is site dependent, whileg*
is not, i.e.,

gi~ t !5b ig* ~ t !. ~11!

The assumption~11! in effect reduces the ‘‘nonseparable
continuous-time random-walk model~3! to a ‘‘separable’’
one as originally proposed in Ref.@27#.

Substituting Eq.~11! into Eq. ~7!, we get

ĝ~s!5exp$2s@t1mĝ* ~s!#%, ~12!

where

m[(
i 51

N

b iDt i . ~13!

ties
4In the notation, e.g., of Hughes@18#, we would writeh(Lua,t).
8-3
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V. CVETKOVIC AND R. HAGGERTY PHYSICAL REVIEW E65 051308
Thus, to compute the unconditional densityh(t), we require
the joint densityf (t,m).

In view of Eq. ~12!, we have

ĥ~s!5 f̂ tm@s,sĝ* ~s!#, ~14!

where f̂ tm denotes the Laplace transform of the joint dens
f (t,m)[ f tm , if such can be identified. Note that this sol
tion is applicable irrespective of whether the cumulants
g(t) are finite or infinite.

A simplified alternative to using the joint densityf tm , is
to set bounds onh(t), by treating two limiting cases: on
wheret and m are perfectly correlated~functionally depen-
dent!, and the other wheret andm are uncorrelated.

In the perfectly correlated case, only ifm is linear int as
m5bt, can we obtain an expression corresponding to
~14!. In view of Eq. ~12!, we then have

ĥ~s!5 f̂ t@F~s!#, ~15!

whereF(s)[s@11bĝ* (s)#. Expression~15! is a Laplace
transform solution of thesubordinationproblem in the ter-
minology of Feller @28#, where u@t(L)#, and t(L) is the
directing process. A relationship similar to Eq.~15! was first
derived for homogeneous media in chromatography@1,2#.
Hence Eq.~14! generalizes Eq.~15! from homogeneous to
disordered media with ‘‘separable’’ random properties.

In the uncorrelated case, we get

ĥ~s!5 f̂ tm@s,sĝ* ~s!#5 f̂ t~s! f̂ m@sĝ* ~s!#. ~16!

Expression~16! is a more general solution of the subordin
tion problem, whereu~t,m!, and t and m are the directing
processes.

C. Finite exchange cumulants

If the cumulants ofgi(t) are finite to order ‘‘M,’’ the
unconditional arrival time densityh(t) can be obtained in
terms of integrated cumulants ofgi(t) along the lattice.

Since by definition

mj5 lim
s→0

F ~21! j
] j ĥ

]sj G5 lim
s→0

F ~21! j
] j~ ĝ !

]sj G ,
j 50,1,2,3,...,M ~17!

the key to computingh(t) is knowledge of the joint density
f (t,m0 ,m1 ,m2 ,...,mM), where

m j5(
i

b iwji Dt i , wji 5 lim
s→0

F ~21! j
] j ĝi*

]sj G . ~18!

We refer tom’s as ‘‘exchange trajectories,’’ since they cha
acterize exchange in an integrated sense along the entire
tice. It may be noted that finite cumulants ofgi to order ‘‘M,’’
imply finite cumulants ofh to order ‘‘M11.’’

The moments off (t,m0 ,m1 ,m2 ,...,mM) are defined as

^t&, ^m j&, ^tm j&, ^m jmk&, ^tm jmk&, etc.
05130
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If exchange is homogeneous~i.e., cumulants are site inde
pendent!, then f (t,m0 ,m1 ,...,mM) reduces to the NIP
crossing-time densityf (t). We refer tof (t,m0 ,m1 ,...,mM)
~or any of its marginal densities! as ‘‘exchange trajectory
density.’’ f (t,m0 ,m1 ,...,mM) characterizes transport on th
macroscale, reflecting the structural, or morphological, f
tures of transition and theP field. In effect, f provides
the link between the mesoscale and the observa
~macro!scale.

In the general case, the joint densityf (t,m0 ,m1 ,...,mM)
can be obtained using Monte Carlo simulations~see discus-
sion below!.

D. General case

In the general case, where cumulants ofgi(t) are not nec-
essarily finite, we can obtainh(t) by ensemble averaging
g(t), i.e.,h(t)5^g(t)&, using Monte Carlo numerical simu
lations. To summarize the simulation steps, we assume
that transition is driven by a steady-state, random-flow fi
V(x), with a nonzero mean drift, i.e.,^V(x)&Þ0, where^ &
denotes ensemble averaging.

Let v(vV ,vP) where vV is as element of the sampl
space for the flow field realization,V, andvP an element of
the sample space for the exchange parameter vectorP(x).
We assume that the statistics ofV and P fields are given
~mean, covariances, cross covariances, etc.!.

For eachv ~realization ofV andP!, NIPs are injected at
a given location, and followed, whereby the trajectoriesX
are computed. The trajectoriesX are discretized as one
dimensional lattices with equidistant time steps. At each
the exchange parametersP are sampled along a trajectory a
P@X(l ,a)# to obtain Pi and gi , and ĝ is computed by
quadratures from~7!. Then h(t) can be obtained either b
computingĥ5^ĝ(s)& with numerical inversion, or by invert-
ing ĝ for eachv and then averaging, i.e.,h(t)5^g(t)&.

Further details on Monte Carlo simulations in the conte
of geological media can be found in Ref.@13#. Note that the
use of Eq.~7! simplifies numerical simulations significantly
since a three-dimensional transport-exchange problem is
duced to a three-dimensional flow problem and a o
dimensional exchange problem.

IV. ILLUSTRATION EXAMPLES

A. Moments of h: Transition with exchange disorder

Using the definition ofgi in terms of f i @Eq. ~5!#, the
moment of order ‘‘j’’ m j @Eq. ~18!# can be written as

m j5(
i

Dt i~21! j
] j ĝi

]sj U
s50

5(
i

Dt i j ! E
0

` f i~k!

kj dk. ~19!

In our following discussion, we assume thataÞ0 in Eq.
~10!, and them0 andm1 are finite for alli; our focus is on the
computation of the first two moments ofh defined by

^u&5^t&1^m0&,

su
2[^u2&2^u&25st

212stm0
1sm0

2 12^m1&, ~20!
8-4
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where

^m0&5K (
i

b iDt i L , ^m1&5K (
i

b iDt i

ki
L ~21!

and stm0
[^tm0&2^t&^m0&, sm0

2 [^m0
2&2^m0&

2, st
2

[^t2&2^t&2. Note that finitem1 implies finite average ex
change time.

Consider the simplebinary exchange disordermodel @9#
where exchange takes place at a random fraction of the
tice sites. For the binary model

gi~ t !5vg~ t ! or f i~k!5vf~k!, ~22!

wherev is a random variable taking values 1 and 0, w
probabilityp for v51, and probability 12p for v50; g(t)
andf are site-independent.

With Eq. ~22!, Eq. ~19! reduces to

m j5tv~21! j
] j ĝ

]sj U
s50

5tv j ! E
0

` f~k!

kj dk. ~23!

For the first two moments ofh ~20!, we requirem05tvb0
and m15tv/kH wherekH is the harmonic mean exchang
rate.

Assuming for simplicity that the transition and exchan
disorder are uncorrelated~i.e., stm0

50!, we write expres-
sions for the first two moments ofh ~20!, applicable for the
binary exchange model, as

ū5^t&~11pb0!, su
25st

2~11p2b0
2!12^t&p

b0

kH
.

~24!

Hence the first moment ofh is dependent only onp andb0 ,
and not affected by the choice of the exchange model; a
for kH→0, we havesu

2→`. If exchange is uniform, then
p51; in the absence of exchange,p50, andsu

25st
2, con-

sistent with the fact that NIP and IP transport coincides.
We compute the second momentsu

2 for three common
exchange models summarized in Appendix B:

For thefirst-order model~B1!, we get

su
25st

2~11p2b0
2!12^t&p

b0

k0
, ~25!

where b0k0 is the forward andk0 the backward rate con
stants; thuskH5k0 .

For diffusion in spheres~B2!, we get

su
25st

2~11p2b0
2!12^t&p

b0r p
2

15Da
, ~26!

wherer p is the sphere radius andDa is the apparent diffusion
coefficient for the spheres, which accounts for possible so
tion. In this case,kH515Da /r p

2.
For themultiple-rate Gamma model~B5!,
05130
t-
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su
25st

2~11p2b0
2!22^t&p

b0b

j12
, ~27!

wherej and b are parameters of theg density. In this case
kH52(j12)/b with j,22. Note that forj>22, su

2 is not
defined.

B. Density h: Non-Gaussian transition with uniform exchange

It is a common practice in applications to assume tran
tion disorder with uniform exchange, where transition dis
der is Gaussian, and exchange is assumed to have finite
mulants, e.g., @17#. We emphasize here non-Gaussi
transition with uniform exchange, with cumulants that a
not necessarily finite.

For illustration, we consider two cases using the trunca
stable density in Eq.~10! with d50, c51, a51/2, variousa,
and with g(t) given by two different functions. To obtain
h(t) we invert the analytical solution numerically. The fir
example ofg(t) is applicable for diffusion into rock from
parallel fractures. This density is provided in Ref.@24# and is
given by Eq.~5! with f i defined in Eq.~39! wherel is large
but finite. Because of diffusion into a finite region,g(t) be-
haves ast21/2 ~i.e., h521/2! betweent50 and approxi-
mately the diffusion time scale ofl 2/D, which in this case is
3.331026 @T#. Results are shown in Fig. 1~a!. The function
h(t) shows three possible power-law regimes at late ti
~i.e., after the peak!, with not all present for any particular se
of parameters. Regime 1 causesh(t) to scale ast2a21. This
regime exists, in general, over times whereg(t) is not power
law but before the truncation of the stable density from E
~10!, determined largely by the value ofa. In Fig. 1~a! we
see Regime 1 only at latest times~after l 2/D! for the case of
a50. Given the value ofa51/2, h(t);t21/2 in that region.
Regime 2 causesh(t) to scale ast2a(h11)21. This regime
exists, in general, over times where bothg(t) and the stable
density from Eq.~10! are power law. We see this behavio
for a50 and times less thanl 2/D, whereh(t);t25/4. Re-
gime 3 causesh(t) to scale ast2h22. This regime exists, in
general, over times whereg(t) is power law, but where the
stable density from Eq.~10! has been truncated. This beha
ior exists, in our example, at times prior tol 2/D and when
a.0.

The second example density,g(t);t21.8 ~i.e., h50.8!,
results from diffusion~from fractures! into rock matrix with
a large range of physical properties. Such behavior has b
observed, for example, in fractured dolomite@24,29#. In this
second example, power-law behavior ing(t) is confined be-
tween both a minimum and a maximum time~1 and 107 @T#,
respectively!. The key difference, however, between the se
ond example and the first is the value ofh, which is less than
0 in the first example, and greater than zero in the seco
Results are shown in Fig. 1~b!. Similar to the first example
there is more than one power-law regime forh(t). However,
sinceh.0, the late-time behavior is always dominated bya
unless the density is truncated. Regime 1, whereh(t)
;t2a21, exists at all late time, provided thata!1. Since
h.0, there is no Regime 2. Regime 3, whereh(t)
;t2h22, can only exist ifa is not negligible. Given a large
8-5
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enougha, the late-time behavior ofh(t) betweentmin and
tmax is determined byh.

C. Density h: Non-Gaussian transition with exchange disorder

We limit our discussion here to the factorized case~16!.
Closed-form solutions forh(t) @Eq. ~16!# can be obtained
only in a few special cases, wheng is available in closed
form and f (t) and f (m) assume trivial forms, such asd
functions. In the case whereg is available in closed form
with f (t) and f (m) given, h can be solved in a relatively
simple manner, by numerical quadratures, possibly comb
with numerical inversion off̂ . In the general case,h can be
either studied through its cumulants~if these are finite!, or
evaluated using numerical inversion and Monte Carlo sim
lations. In the following, we illustrate the asymptotic beha
ior of h(t), using the limiting properties of its Laplace tran
form ĥ for s→0.

Consider the case where a characteristic exchange
cannot be defined, i.e., the first moment ofg(t) is infinite;

FIG. 1. Interaction between macroscale transition and mic
scale exchange. The transition is characterized by the trunc
stable density~10! with d50, c51, a5

1
2 and a range ofa @1/T#

values. The exchange is characterized by two forms ofg: ~a! g(t) as
defined in Eq.~B4!; ~b! power-lawg(t);t21.8 (h50.8).
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this corresponds to the case~B7!, with h,1. We consider
here the range21,h,1 applicable for most practical prob
lems. Let the trajectory densities assume the forms~10! and
~A4! with am50 (m5t,m), i.e., one-sided stable densitie
where for simplicity, we neglect centering (dm50). Then we
havesĝ;sh11, and Eq.~16! yields for s→0,

12ĥ~s!'cts
at1cmsam~11h!. ~28!

Asymptotic behavior ofh(t) will thus be determined by the
relative magnitude of the exponentsat andam(h11).

Consider first the special caseat5am[a. Then for
h.0, the asymptotic transport~for fixed, finite L! is domi-
nated by the trajectory density exponenta. For
h,0, asymptotic transport is dominated by a combination
the exponentsa andh, i.e.,

h~ t !;t2a~h11!21, t→`. ~29!

Sincea,1, then forh,0 we havea(h11),1 and all the
moments ofh(t) other than the zeroth moment, are infinit

In the caseat,am , and for 0,h,1, the transport is
always asymptotically dominated by transition. Ifat.am
and21,h,0, the transport is always asymptotically dom
nated by exchange. The dependence of asymptotic trans
on the exponentsat , am , andh, can be clearly summarize
on a (am ,at) plot as given by the simple linear relationsh
at5am(h11). For any given21,h,1, a line from the
origin given byat5am(h11) defines a dominance ‘‘delim
iter,’’ or ‘‘jump’’: below the line, any combination ofat and
am implies an asymptotic dominance of exchange, wher
above the line any combination ofat and am implies an
asymptotic dominance of transition.

In the case densitiesf t and f m have finite moments, i.e.
amÞ0 (m5t,m), asymptotic transport is dominated by th
exchange-time density exponenth, i.e.,

h~ t !;t2h22, t→`. ~30!

For a rate distributionf other than the power law, andg
distribution, it can be shown that asymptotically, the slope
g(t) is zero~albeit the convergence to zero may be slow!. As
a simple example, considerg given in Eq.~B1!. For suffi-
ciently large time~or smalls!, ĝi'b i , and

h~ t !5E
0

1

f t~t! f m~ t2t!dt, ~31!

where m5( ib iDt i ; this case has been analyzed, e.g.,
Ref. @13#. If b i5b, i.e., site dependence is neglected, w
have

h~ t !5
1

R
f t~ t/R!, ~32!

whereR[11b is commonly referred to as the retardatio
factor. The classical subsurface transport model~convective
diffusive, or advective dispersive with constant diffusion c
efficient, for a pulse in a semi-infinite domain, with consta

-
ed
8-6
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linear equilibrium sorption, e.g., Ref.@30#! is then recovered
from Eq. ~32! where f t is given in Eq.~10! with aÞ0, d
50, a51/2.

V. CONCLUSIONS

In the factorized~‘‘separable’’! case,u is dependent ont
and m, i.e., u~t,m!, and the solution is obtained asĥ
5 f̂ tm(s,sĝ); this generalizes the classical result of chrom
tography obtained for the homogeneous case asĥ5 f̂ t(s
1sĝ) @1#. m accounts for macroscale disorder in a relative
simple manner, by integrating the variable exchange par
eterb ~‘‘total capacity’’! along the entire lattice. In this cas
u~t, m! is subordinated tou with two operational times,t and
m @28#. In the ‘‘nonseparable’’ case where all exchange p
rameters exhibit disorder, while cumulants ofg are finite,
u(t,m0 ,m1 ,m2 ,...) is subordinated tou, with an infinite se-
ries of operational variablest, m0 ,m1 ,m2 ,... @28#. In other
words,u depends onmm(L) (m50,1,2,...), in which case the
solution for h is derived in the form of cumulants. In th
most general case where cumulants ofgi are not defined, the
solution can be obtained only using Monte Carlo simu
tions, based on one-dimensional lattices~trajectories!.

Asymptotic solutions ofh @Eq. ~16!# were obtained by
introducing a ‘‘truncated stable’’ densityf @Eq. ~10!# for ex-
change trajectoriest andm ~in this case simplified as uncor
related!. Two significant features of the truncated stable d
sity ~10! @or Eq.~A4!# in the present context are:~i! it can be
directly used in@Eq. ~16!# for setting bounds on the densit
h; ~ii ! by suitable choice of parameters, it reduces to fami
densities with finite or infinite moments, providing a smoo
transition between the two. Of particular interest is the o
sided stable~Levy! density ~for a50 and 0,a,1!, and
inverse-Gaussian density (aÞ0,d50,a51/2) characteristic
for a classical convection-diffusion process.

An interesting asymptotic case is when both microsc
exchange is characterized by power-law asymptotic beha
with exponenth, and macroscale transition is characteriz
by a power-law with exponentsat and am . The line at
5am(h11) defines two regions in the exponent pla
(at ,am), one in which the asymptotic transport is dom
nated by transition, and one in which it is dominated
exchange. For the case of transition disorder with unifo
exchange, both transition~summarized in the exponenta!
and exchange~summarized in the exponenth! can influence
the late-time behavior ofh(t). Since exchange is subord
nated to transition, it will unconditionally influence the lat
time behavior ofh(t) only if h,0. If h.0, exchange will
dominate at late time provided that transition becom
Gaussian in the limit. However, if transition is never Gau
ian and h.0, then transition effects will determine th
asymptotic behavior ofh(t). In the case transition is neve
Gaussian andh,0, then both the transition and exchan
will determine late-time behavior of the densityh(t).
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APPENDIX A: ONE-SIDED TRUNCATED STABLE
DENSITY

Suitable choice of the parameters reducesf @Eq. ~10!# to
familiar forms, either with finite, or infinite moments. Th
Dirac d function is obtained from@Eq. ~10!# as a degenerate
case witha51. Settingd50 and a51/2, we obtain the
solution of the convection-diffusion ~or advection-
dispersion! equation for pulse injection in a semi-infinite do
main in the form

f t~t!5
cecAa

2Apt3
expS 2at2

c2

4t D , ~A1!

where

a5
U2

4D
, c5

L

AD
~A2!

with L being the distance,U the mean drift, andD the dis-
persion coefficient@31#.

Settinga50, reducesf t @Eq. ~10!# to the one-sided stable
~Levy! density, whered is the centering parameter,c is the
width parameter, anda the exponent@18#. If we denote the
Levy density asf L(t)[ f (t;a50), and setd50, we can
write

f t~t!5 f L~t!e2at1caa
.

Since f L(t);t2a21 for t→`, we have

f t~t!;t2a21e2at. ~A3!

Thus the parametera determines the ‘‘cutoff.’’ Up toat
'0.1, f coincides with the Levy density, after which its ta
starts deviating from a power law, gradually reducing to ze
at at'100.

If aÞ0, the moments off t @Eq. ~2!# are finite, the first
two being

^t&5caaa21,

st
2[^t2&2^t&25c~12a!aaa22.

Sincea can be chosen arbitrarily small,a and a determine
the ‘‘degree’’ of ‘‘non-Gaussianity’’ of the densityf, and thus
can be useful for interpreting observations in a wide range
media with a variety of structures.

In view of the dependence ofm @Eq. ~13!# on Dt i , we
propose a general densityf m in the Laplace domain, in anal
ogy to f t @Eq. ~10!#, as

f̂ m~s!5exp@caa2ds2c~a1s!a#, ~A4!

where a, c, d, 0,a<1 are parameters form, in general
different from those fort. A special case of interest is ifm
5bt (b5const), witha51/2 andaÞ0 in which case@Eq.
8-7
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~A4!# can be inverted analytically and is the solution of t
convection-diffusion equation, with retardation, for a pu
in a semi-infinite domain@30#.

Finally, we note thatf t ~10! is comparable to the Laplac
transform of the Gamma density (f G) with nonzero center-
ing:

f̂ G5b2j~b1s!je2ds,

whereb,d,j are parameters.b is here the ‘‘cutoff’’ parameter
corresponding to oura in Eq. ~10!.

APPENDIX B: A FEW TYPICAL EXCHANGE MODELS

1. First-order model

This model has been widely used in the analysis of ch
matographic columns@1#, in the oil industry@32#, and for
subsurface transport@33,34#. The rate densityf and the
memory functiong are defined as

f~k!5b0d~k2k0!, g~ t !5b0k0e2k0t, ~B1!

whereb0 andk0 are constants. The master equation form
lation for multiple transport paths with random exchanges
Hughes and Sahimi@8,9#, is also based on this model.

As shown, e.g., in Ref.@2#, g @Eq. ~B1!# is applicable for
a variety of diffusion-sorption linear models where the
netic transfer is characterized by asinglerate~equal tok0! or
equivalently a single time scale~equal to 1/k0!.

2. Diffusion in spheres

This is a classical model in reactor engineering@2#. Simi-
lar to the first-order model, the diffusion model is charact
ized by a single exchange rate. The rate densityf and the
memory functiong are defined by@24#

f~k!5 (
m51

`
6b0

m2p2 dS k2m2p2
Da

r p
2 D ,

g~ t !5 (
m51

`

6b0

Da

r p
2 expS 2m2p2

Da

r p
2 t D , ~B2!

wherer p is the sphere radius andDa is the apparent diffusion
coefficient for the spheres, which accounts for possible so
tion.

3. Diffusion into infinite blocks

Another widely used model is for retention in fracture
rock with the rate densityf i of the form @24#

f i~k!5 lim
t→`

(
j 51

`
8Ai l

~2 j 21!2p2 d jFk2
~2 j 21!2p2

4

Da

l 2 G , ~B3!
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which yields

gi~ t !5AiADa

pt
, ĝi~s!;

1

As
, ~B4!

whereAi is a site-dependent retention parameter group;Da
is an apparent diffusion coefficient in the~immobile! rock
matrix, which accounts for sorption; andd j is a Dirac d
function. The corresponding continuum form of the nonh
mogeneous retention functiong is given elsewhere, e.g
@12,14#. For this model,g quantifies parallel-plate advection
diffusion into an infinite medium~rock! @35#, and is equiva-
lent to a one-sided stable density with exponent1

2 @28#.

4. Gamma model

This model accounts for a distribution of exchange rat
which has provided a good description of desorption in
vironmental engineering, e.g.@36,37#. The rate densityf and
the memory functiong are defined as@24#

f~k!5
b0

g~2j21!

e2bk

bj11kj12,

g~ t !5
2b0~j11!

b
~ t/b11!j, ~B5!

wherej andb are parameters of the gamma density.

5. Power-law model

A particularly useful form of the rate densityf is given
by the power law@6,24#

f~k!;kh21, ~B6!

which yields

g~ t !;t2h21, ĝ~s!;sh. ~B7!

Giona and co-workers@5# showed that mass uptake by di
fusion into a finitely ramified fractal with a constan
concentration external boundary evolves as;td

s/2 and
;s2ds21, where ds is the spectral dimension. Sinceĝ(s)
5M̂ r(s)/M̂ (s), e.g.@2#, whereM̂ r(s) is the mass retained in
the immobile water andM̂ (s) is the mass retained in th
mobile water,h52ds/2 and

g~ t !;tds/221,ĝ~s!;sds/2.

For diffusion into a slab of homogeneous rockds51, and we
recover the model~B6! with h521/2.
8-8
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